

About me

- BA Governance & Public Policy (Uni Passau)
- MSc Innovation Economics (AAU)
- PhD Innovation Economics Mapping the Development of the Danish Smart Grid
- Never been really good at mathematics
- Needed to solve a problem during my PhD
- Started with Python, NLP, Network analysis ...
- Extended into ML/Al methods
- Al Denmark aidenmark.dk
- Lead: Al Growth Lab

From catching up to industrial leadership: towards an integrated market-technology perspective. An application of semantic patent-to-patent similarity in the wind and EV sector

Daniel S Hain, Roman Jurowetzki X. Primoz Konda, Lars Oehler

Industrial and Corporate Change, Volume 29, Issue 5, October 2020, Pages 1233–1255, https://doi.org/10.1093/icc/dtaa021

Published: 15 October 2020

The Privatization of AI Research(-ers): Causes and Potential Consequences

- From university-industry interaction to public research brain-drain? -

Roman Jurowetzki $^{\phi}$, Daniel S. Hain $^{\phi}$, Juan Mateos-Garcia † , and Konstantinos Stathoulopoulos †

 $^{\phi}$ Aulborg University Business School, DK † Nesta, UK

February 15, 2021

Need for non-coders

Industry demand for SAMF students with strong quantitative / computational skill. Yet, current DS/ML teaching mostly for CS students.

Data & ML literacy becoming crucial across managerial positions → Transfer of ML to business & policy opportunities.

Need for data literacy

Need for stronger analytics

Need for stronger applied method training to support exciting master projects, transition into PhD, and advanced BI positions.

Students want to get challenged

Put into a situation where they have to solve problems that are **hard**, real, **measurable** but **fair** and **solvable**.

real PBL (my view...)

Too little PBL in SAMF/HUM

- Lack of tangible problems
- Lack of measurable goals
- Broad scope and (too) much freedom
- Very few quantitative projects
- Little problem-solving

Disconnect of methods training and application

- Mathematics mainly thought in a theoretical vacuum
- Statistics and econometrics mostly thought with strong formal emphasis and
- main focus on inferential statistics (causality and variations of OLS) while predictive analytics runs the world

Lack of motivation and legitimacy

Bottom Up vs. Top Down

method first problem first

- Are my students going to compete with mathematicians or ML engineers?
- How many of my students are going to do a PhD?

SEMESTER SCHEDULE

NLP and Networks (5ECTS)

Working with unstructured and relational data. Modelling semantic and relationships.

M1 Sept.

Intro to applied Machine Learning (5ECTS)

Working with data, "traditional" machine learning, model evaluation

Intro to Deep Learning and AI (5ECTS)

M3

Nov.

Designing artificial neural network architectures to get state-of-the-art results. Also: When not to use them.

Capstone Project (15 ECTS)

Usually, work on a real-world data science problem in collaboration with companies and organizations.

centrica energy

SIEMENS Gamesa

RENEWABLE ENERGY

Predicting

Production errors Customer churn Employee turnover **Energy prices** Street maintenance

We teach R and Python

Teaching students to use software they won't have access to after graduation is immoral.

3:00 PM · May 1, 2020 · Buffer

236 Retweets 70 Quote Tweets 1,604 Likes

We host our material on Github and encourage students to upload their projects there

Module 1

- Intro to machine learningIntro to "communities of practice"
- . Data handling
- Descriptive statistics / Exploratory Data Analysis
- . Data Visualization
- "Traditional" ML supervised / unsupervised
- . Evaluation
- Ethics, Algorithmic bias & other issues


```
[12] text = """Donald Trump vowed that his second meeting with Kim Jong-un would be at
    In Hanoi on Wednesday evening, every effort was made in recreating the circumstan

[ ] import spacy
    from spacy import displacy
    doc = nlp(text)
    displacy.render(doc, style='ent', jupyter=True)
```


Networks & NLP

- Understanding / handling relational data
- Network statistics / indicators / visualizations
- Complex networks (multiplex / edge color)
- Intro to natural language processing (working with text data)
- Bag-of-word models and derivatives
- Introduction to embedding
- Vectorization and use in ML pipelines

Deep Learning

- Intro to neural models and Keras-Tensorflow
- Common DL architectures
 - Feed forward nets
 - Convolutional nets
 - Recurrent nets
- Advanced architectures
 - Autoencoders
 - Multibranch models
 - Advanced work with embeddings
 - Transformers

Stock Movement Prediction and Trading Strategy based on Tweets: An Analysis on the Streaming Sector

Designing an algo-trading bot that uses

- Stock data
- Twitter sentiments 😊 😂

To propose a trading strategy

Stock Movement Prediction and Trading Strategy based on Tweets: An Analysis on the Streaming Sector

Figure 15: Investment Strategy Netflix

- Source, clean and assemble data (financial & twitter)
- Identify networks of relevant twitter profiles (network analysis)
- Preprocess text data and run sentiment analysis
- Aggregate results and align with stock market data
- Train machine learning model (training, fine-tuning etc.)
- Define, assemble and run back-testing
- Document and communicate process and results

So what?

- Motivation first!
- Create more opportunities to learn from solving real problems
- Courage to confront SAMF/HUM students with real "engineering problems"
- Acknowledge that Github, Medium, tech. documentation and ArXiv are often better/timlier than journal articles or books
- Courage to leave some details to STEM

